По словам исследователей, благодаря этим свойствам разработку можно будет использовать при создании светочувствительной молекулярной электроники, которая позволит обрабатывать большие объемы информации быстрее, чем обычные электронные устройства.
Оптоэлектронные системы — это системы, использующие свет для управления движением зарядов. Такие системы занимают первое место по скорости передачи данных. Они позволяют повысить скорость и производительность работы бытовой, промышленной и медицинской электроники, а также усовершенствовать системы беспроводной связи. Однако оптоэлектронных материалов до сих пор создано не так много, поэтому их разработка востребована. В частности, перспективными считаются наносистемы на основе флуоресцентных белков — природных молекул, способных под действием света испускать собственное свечение в другом диапазоне длин волн. Если соединить флуоресцентный белок с материалом, проводящим ток — например, углеродной нанотрубкой, — с помощью света можно будет запускать поток заряженных частиц и таким образом передавать информацию.
Ученые из Национального исследовательского университета «Московский институт электронной техники», Сколковского института науки и технологий и Института биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН создали оптоэлектронный компонент на основе углеродной нанотрубки и красного флуоресцентного белка. Для этого к углеродной нанотрубке прикрепили молекулы флуоресцентного белка и изучили их поведение под действием электрического поля.
На полученное наноустройство авторы подавали свет разных длин волн, чтобы понять, как меняется способность элемента проводить электрический ток. Эксперименты показали, что, когда устройство освещали любыми длинами волн кроме 390 и 590 нанометров (что соответствует фиолетовой и желтой частям спектра), протекающий через него ток резко увеличивался. В этом случае на освещение положительно «реагировала» нанотрубка, проводящие свойства которой под действием света улучшились.
Если же устройство освещали лучами с длиной волны 390 или 590 нанометров, протекающий в нем ток плавно спадал, а значит, проводимость (фотоотклик) элемента оказывалась отрицательной. Такой эффект объясняется тем, что именно на этих длинах волн флуоресцентный белок поглощает освещение: он преобразует оптический сигнал (свет) в электрический, приводя к ослаблению тока. Таким образом, полученное исследователями устройство может воспринимать свет различных длин волн, при этом по-разному — положительно или отрицательно — реагируя на облучение. Это можно использовать в управляемых светом устройствах для передачи и хранения информации.